

316L-SCQ®

Applicable specifications: AMS 5653; ASTM A182, A276, A314, A479, D Method

Associated specifications: JIS 4303; MIL-S-862; QQ-S-763; SEMI F19, F20, F105 Spec; UNS S31603

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Chromium	16.00-18.00 %	Nickel	10.00-14.00 %
Molybdenum	2.00-3.00 %	Manganese	0.25-2.00 %	Silicon	Max 1.00 %
Phosphorus	Max 0.045 %	Carbon	Max 0.03 %	Sulfur	0.001-0.015 %

Forms manufactured

Bar-Flats Bar-Rounds Custom Shapes Hexagon Wire-Sha	apes
---	------

Description

316L-SCQ is an austenitic stainless designed for use where extremely good surface finishes are required. The corrosion resistance and mechanical properties of 316L-SCQ are similar to 316L. Typical specifications for bar products are ASTM A276 and SEMI F20.

316L-SCQ is produced to a tightly controlled chemical composition within conventional analysis limits. Carefully selected melt stock is used to restrict the occurrence of typical residual elements. One important element, sulfur, influences inclusion count, machinability, and weldability, and can be varied according to customer specification. The intermediate sulfur range is controlled to 0.001–0.015% for a unique combination of weldability and micro-cleanliness. For the ultra-pure composition, sulfur is held in the range of 0.001–0.004% maximum. Either of the compositions may be melted by air melting + vacuum arc remelting (AOD + VAR) or by vacuum induction melting + vacuum arc remelting (VIM + VAR) depending on the level of micro-cleanliness required.

Key Properties:

- Superior corrosion resistance
- · Excellent micro-cleanliness for reduced inclusions
- Good weldability
- Outstanding surface finish

Markets:

- Aerospace
- Industrial

Energy

Medical

Applications:

- Thin-wall components
- · Pipe fittings
- Instrument valves
- Medical equipment
- Ultra-high vacuum equipment
- Solar components

Corrosion resistance

Due to its superior corrosion resistance, the use of 316L-SCQ has been extended to handling many of the gasses used in semiconductor manufacturing and chemicals used by chemical process industries.

The alloy is more resistant to pitting than conventional 18-8 alloys.

For optimum corrosion resistance, surfaces must be free of scale, coatings applied for drawing and heading, lubricants and foreign particles. After fabrication of parts, cleaning and/or passivation should be considered.

IMPORTANT NOTE:

The following 4-level rating scale (Excellent, Good, Moderate, Restricted) is intended for comparative purposes only. Corrosion testing is recommended. Factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Good
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		

Physical properties

PROPERTY	English Units
SPECIFIC GRAVITY	7.95
DENSITY	0.2870 lb/in ³
MEAN SPECIFIC HEAT	0.1200 Btu/lb/°F
MEAN COEFFICIENT OF THERMAL EXPANSION (CTE)	10.3 x 10 ⁻⁶ in/in/°F
ELECTRICAL RESISTIVITY	445.0 ohm-cir-mil/ft

Heat treatment

Annealing	Heat to 1850/2050°F (1010/1121°C) and water quench. Brinell hardness approximately 150.
Hardening	Cannot be hardened by heat treatment. Hardens only by cold working.

Workability

Hot working	316L-SCQ can be readily forged, upset, and hot headed.
Forging	To forge, heat uniformly to 2100/2300°F (1149/1260°C). Do not forge below 1700°F (927°C). Forgings can be air cooled. Best corrosion resistance is obtained if the forgings are given a final anneal.
Cold working	316L-SCQ can be deep drawn, stamped, headed, and upset without difficulty. Since this alloy work hardens, severe cold forming operations should be followed by an anneal.

Workability continued

316L-SCQ machines with chip characteristics that are tough and stringy. The use of chip curlers and breakers is advised. Since the austenitic stainless grades work harden rapidly, heavy positive feeds should be considered.

Machinability

Many customers prefer a small amount of cold work to enhance machinability and achieve a better chip characteristic and as-machined surface finish. The process of cold drawing increases the yield strength and tensile strength and decreases percent elongation and percent reduction of area. To accommodate cold work to improve machinability, many customer specifications allow a decrease in the percent elongation requirement to 20% minimum.

Since machinability means different things to different shops (speeds and feeds, tool life, surface finish, etc.), each shop needs to run comparative tests to establish optimum machining parameters for a particular sulfur level and to generate cost data. Usually, the lower the sulfur levels, the greater the tendency to burnish the surface, which improves surface luster. Also, the lower the inclusion content, the better the surface after electropolishing.

Weldability

316L-SCQ alloys are readily welded using gas tungsten arc, plasma, laser, and electron beam welding techniques. Extra attention should be paid, however, to the weld penetration and bead geometry because of the effects on sulfur on the physics of the weld puddle. The penetration ratio (ratio of depth to bead width) increases with an increase in the sulfur content up to about 0.03%. Conversely, the weld bead will become shallow and broader as the sulfur content decreases. The weld bead geometry and location can be a problem if components with significantly different sulfur levels are joined. Where possible, it is suggested that both components have similar sulfur contents. When this is not possible, good welds are possible between two components with significantly lower sulfur (0.004% vs. 0.008% sulfur) through carefully positioning the welding electrode and selection on the shielding gases.

316L-SCQ can be satisfactorily welded by the shielded fusion and resistance welding processes. Since austenitic welds do not harden on air cooling, the welds should have good toughness.

Oxyacetylene welding is not recommended since carbon pickup in the weld may occur.

The alloy can be welded without loss of corrosion resistance due to intergranular carbide precipitation. Usually the alloy can be used in the as-welded condition. However, for service in the most severe environments, the welded structure should be reannealed after welding.

Where a filler metal is required, AWS E/ER316L welding consumables should be considered.

Typical feeds and speeds

The feeds and speeds in the following charts are conservative recommendations for initial setup. Higher feeds and speeds may be attainable depending on machining environment.

TURNING — SINGLE-POINT AND BOX TOOLS										
CONDITION	DEDTII	HIGH-SPEE	HIGH-SPEED TOOLS		CARBIDE TOO					
	DEPTH OF CUT. IN	SPEED,	FEED,	TOOL	SPEED, FPM		FEED,	TOOL		
	0. 00.,	FPM	IPR	MATERIAL	UNCOATED	COATED	IPR	MATERIAL		
Annealed	.150	50	.010	M-48, T-15	290	330	.010	C-6		
Allileateu	.025	65	.005	M-48, T-15	315	365	.005	C-6		
	.150	40	.010	M-48, T-15	275	295	.010	C-6		
Cold drawn	.025	55	.005	M-48, T-15	295	325	.005	C-6		

TURNING—CUT-OFF AND FORM TOOLS										
		FEED, IP	R	TOOL MATERIAL						
CONDITION	SPEED, FPM	CUT-OFF	TOOL WID	HIGH-SPEED	CARBIDE					
		1/16	1/8	1/4	1/2	1	1-1/2	2	TOOLS	TOOLS
A	45	.0010	.0011	.0013	.0018	.0010	.0008	.0005	M-48, T-15	_
Annealed	195	.0010	.0011	.0013	.0018	.0010	.0008	.0005	_	C-6
Cold drawn	40	.0010	.0011	.0013	.0018	.0010	.0008	.0005	M-48, T-15	_
	185	.0010	.0011	.0013	.0018	.0010	.0008	.0005	_	C-6

ROUGH REAMING													
CONDITION	HIGH-SPEED	TOOLS	CARBIDE TOO	CARBIDE TOOLS			FEED, IPR, REAMER DIAMETER, IN						
	SPEED, FPM	TOOL MATERIAL	SPEED, FPM	TOOL MATERIAL	1/8	1/4	1/2	1	1-1/2	2			
Annealed	20	M-48, T-15	_	_	.0008	.0009	.0009	.0010	.0011	.0013			
Anneated	_	_	30	C-6	.0008	.0009	.0009	.0010	.0011	_			
Cald duarre	15	M-48, T-15	_	_	.0008	.0009	.0009	.0010	.0011	.0013			
Cold drawn	_	_	25	C-6	.0008	.0009	.0009	.0010	.0011	_			

DRILLING										
	FEED, IF	PR	TOOL MATERIAL							
SPEED, FPM	NOMINA	L HOLE D	HIGH-SPEED	CARBIDE						
	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	TOOLS	TOOLS
20-40	.0008	.001	.002	.004	.006	.007	.007	.008	M-42	_
50-90	.0007	.001	.002	.004	_	.007	.008	_	_	C-6
15-35	.0006	.001	.002	.004	.006	.007	.007	.008	M-7	_
40-80	.0006	.001	.002	.004	_	.007	.008	_	_	C-6
	20–40 50–90 15–35	SPEED, FPM NOMINA 1/16 1/16 20-40 .0008 50-90 .0007 15-35 .0006	1/16 1/8 20-40 .0008 .001 50-90 .0007 .001 15-35 .0006 .001	SPEED, FPM NOMINAL HOLE DIAMETER, 1/16 1/8 1/4 20-40 .0008 .001 .002 50-90 .0007 .001 .002 15-35 .0006 .001 .002	SPEED, FPM NOMINAL HOLE DIAMETER, IN 1/16 1/8 1/4 1/2 20-40 .0008 .001 .002 .004 50-90 .0007 .001 .002 .004 15-35 .0006 .001 .002 .004	SPEED, FPM NOMINAL HOLE DIAMETER, IN 1/16 1/8 1/4 1/2 3/4 20-40 .0008 .001 .002 .004 .006 50-90 .0007 .001 .002 .004 — 15-35 .0006 .001 .002 .004 .006	SPEED, FPM NOMINAL HOLE DIAMETER, IN 1/16 1/8 1/4 1/2 3/4 1 20-40 .0008 .001 .002 .004 .006 .007 50-90 .0007 .001 .002 .004 — .007 15-35 .0006 .001 .002 .004 .006 .007	NOMINAL HOLE DIAMETER, IN 1/16 1/8 1/4 1/2 3/4 1 1-1/2 1/2 1/4 1/2	SPEED, FPM NOMINAL HOLE DIAMETER, IN 1/16 1/8 1/4 1/2 3/4 1 1-1/2 2 20-40 .0008 .001 .002 .004 .006 .007 .007 .008 50-90 .0007 .001 .002 .004 - .007 .008 - 15-35 .0006 .001 .002 .004 .006 .007 .007 .008	NOMINAL HOLE DIAMETER, IN HIGH-SPEED TOOLS

END MILLING — PERIPHERAL														
CONDITION		HIGH-SP	HIGH-SPEED TOOLS							CARBIDE TOOLS				
	DEPTH OF CUT, IN		FEED, I	FEED, IN PER TOOTH						FEED, IPT				
		SPEED, FPM	CUTTER DIAMETER IN			TOOL Material	SPEED, FPM	CUTTE	CUTTER DIAMETER, IN PER TOOTH					
			1/4	1/2	3/4	1-2	MAILKIAL		1/4	1/2	3/4	1-2	MAILMAL	
Annealed	.050	40	.001	.002	.004	.006	M-48, T-15	150	.001	.002	.004	.006	C-6	
Cold drawn	.050	35	.001	.002	.004	.006	M-48, T-15	150	.001	.002	.004	.006	C-6	

SLOT MILLING — PERIPHERAL										
		HIGH-SPEED TO	OLS		CARBIDE TOOLS					
CONDITION	TION DEPTH OF CUT, IN		FEED, IPR	TOOL MATERIAL	SPEED, FPM	FEED, IPR	TOOL MATERIAL			
Annaalad	.050	42	.003	M-48, T-15	166	.003	C-6			
Annealed	.150	35	.0045	_	130	.0045	_			
Cold drawn	.050	36	.003	M-48, T-15	150	.003	C-6			
Cold drawn	.150	30	.0045	_	115	.0045	_			

TAPPING — HIGH-SPEED TOOLS						
CONDITION	SPEED, FPM	TOOL MATERIAL				
Annealed	10-15	M-7, M-10				
Cold drawn	8–13	M-7, M-10				

BROACHING — HIGH-SPEED TOOLS						
SPEED, FPM	CHIP LOAD, IN PER TOOTH	TOOL MATERIAL				
12	.002	M-48, T-15				
10	.002	M-48, T-15				

Additional machinability notes

Figures used for all metal removal operations are averaged. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Micro-cleanness

Cleanness is evaluated by means of a microscopic examination of a sample to establish a JK rating. Carpenter Technology typically conducts this evaluation on billets in accordance with ASTM E-45 Method A with ratings based on Plate III. Samples are rated from the top and bottom of the first, middle, and last ingot of the heat. The maximum JK inclusion ratings in the table below are limits set by SEMI-F20.

MAXIMUM JK INCLUSION RATINGS								
ТҮРЕ	GENERAL PURPOSE GRADE		HIGH PURIT	HIGH PURITY GRADE		ULTRA-HIGH PURITY GRADE		
	THIN	HEAVY	THIN	HEAVY	THIN	HEAVY		
A	2.5	1.0	2.0	1.0	1.5	1.0		
В	2.5	1.0	2.0	1.0	1.0	1.0		
С	2.5	1.0	2.0	1.0	1.0	1.0		
D	2.5	1.0	2.0	1.0	1.0	1.0		

Depending on the ordered chemistry, ultra-high purity (UHP) limits may be met with only an air melt + vacuum arc remelt (AOD + VAR).

MICRO-CLEANNESS SINGLE VACUUM MELT								
SULFIDES ALUMINA		SILICATES		OXIDES				
THIN	тніск	THIN	ТНІСК	THIN	ТНІСК	THIN	THICK	
1-1/2	1	1-1/2	1	1-1/2	1	1-1/2	1	

The cleanest version of 316L-SCQ utilizes two vacuum melting techniques, in combination with restricting sulfur to 0.004% maximum. In all other respects, this material has the same chemical balance and mechanical property capability as the single vacuum melted (AOD + VAR) material. However, to illuminate the advantage of combining low sulfur and double vacuum melting, the JK limits displayed apply (VIM + VAR).

MICRO-CLEANNESS DOUBLE VACUUM MELT							
SULFIDES ALUMINA			SILICATES		OXIDES		
THIN	THICK	THIN	ТНІСК	THIN	ТНІСК	THIN	тніск
1	1	1	1/2	1	1/2	1	1

The two issues most frequently questioned are weldability and machinability. For further information regarding these issues, refer to the machinability and welding sections under the workability section of this datasheet.

Since the manganese in the melt is ultra-low, the alloy can support and prevent the production of manganese fumes during welding to a certain extent.

Considerable experience has demonstrated that the increased purchase price and machining costs associated with double vacuum melted ultra-low sulfur is more than offset by the ability to consistently achieve an exceptional electropolished finish.

For additional information, please contact your nearest sales office:

info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make their own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings LLC., a subsidiary of Carpenter Technology Corporation.